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Abstract

Instead of ®nding only the optimal temperature pro®le, the optimal ¯ow rates of heating and cooling ¯uids are determined, so that the

yield of a desired product in a batch reactor is maximized. The two additional differential equations that are introduced to handle the heat

balances make the optimization more dif®cult, especially when constraints are placed on the reactor temperature. However, by using

iterative dynamic programming (IDP) in multi-pass fashion, the optimal policy can be readily obtained. Optimization as carried out on two

typical batch reactor problems shows that if the heat transfer coef®cient is reasonably chosen, then the optimal yield can be signi®cantly

larger than what can be expected from the best isothermal operation. To prevent simultaneous ¯ows of heating and cooling streams, we used

for optimization a single heat ¯ow term as a control variable. When positive, this heat ¯ow term is equal to the heating stream ¯ow rate;

when negative, the magnitude of the heat ¯ow term is equal to the coolant ¯ow rate. An augmented performance index was used to handle

state constraints resulting from the bounds on the reactor temperature in the second example. In both the examples, it was clear that

signi®cantly better yields than those possible from the best isothermal temperature pro®le can be obtained, even if the heat transfer

coef®cient is not known accurately at the start of the batch time. # 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

There has been a growing interest in recent years in the

use of optimization in the control of batch reactors. A large

part of the recent developments in the optimal control of

batch reactors has been aimed towards obtaining the theo-

retical optimal temperature pro®le [1±3]. An optimal tem-

perature pro®le provides useful design information, by

providing the upper limit for the expected yield of the

reactor and showing how the temperature should change

during the course of the reaction to achieve the maximum

yield. For typical batch reactors, however, the best tempera-

ture pro®le is generally very dif®cult to obtain when Pon-

tryagin's maximum principle is used [4,5]. Part of the

dif®culty is due to the existence of singular arcs and the

low sensitivity of the control policy on the yield of the

reactor [6]. However, iterative dynamic programming (IDP),

as developed by Luus [7,8], offers a good alternative for

obtaining the global optimum. IDP has the advantage of not

requiring additional variables to be introduced, and therefore

the method does not encounter such problems as singular

control [9].

The optimal temperature pro®le, however, cannot be

applied directly to the actual control of a reactor. This is

quite obvious when the optimal control policy consists of

very rapid changes in the temperature. Marroquin and

Luyben [10] found that for typical situations, there is only

a small difference between the yields obtained from the

optimal temperature pro®le and the use of the best isother-

mal policy, and they recommended using the best constant

temperature as the set point for practical control of a batch

reactor. However, it is not possible to start the reactor at the

desired temperature, and due to the heat effects during the

chemical reaction, such control strategy is not always simple

to implement. A better approach is to solve the original

optimal control problem, using the ¯ow rates of the heating

and the cooling ¯uids as the control variables, but still

keeping the objective of maximizing the yield or some other

performance index. The purpose of this paper is to inves-

tigate such an approach in the control of typical chemical

reactors by considering two examples.

As a starting point, we use the approach of obtaining the

theoretical optimal temperature pro®le, which gives us the

theoretical maximum yield that can be expected. This places

the upper limit on the yield, and serves as a useful bench-

mark. The next step is to formulate the optimal control

problem in terms of the control variables consisting of the

physical elements that can be readily manipulated, such as

the ¯ow rates of some heating ¯uid and of coolant. Since at

present the available digital computers are very fast, such an
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approach, although yielding an open-loop control policy,

can be used on-line in feedback manner, where the problem

is solved repeatedly with different initial conditions during

the course of reaction. Appropriate changes can then be

made in the control policy to re¯ect any inaccuracies in

modelling of the system. This is illustrated by both of the

examples.

2. Optimal control problems

2.1. Example 1

Let us ®rst consider the consecutive chemical reaction

A! B! C in a batch reactor, as was considered by Bilous

and Amundson [11], used for optimal control studies by

Jaspan and Coull [12] and Luus [13], and was used as an

example for practical control by Marroquin and Luyben

[10]. In the consecutive reaction scheme it is required to

maximize the production of the desired component B. The

reaction in each step is assumed to be ®rst order, so that the

system is described by the two differential equations

dx1

dt
� ÿk1x1 (1)

dx2

dt
� k1x1 ÿ k2x2 (2)

where x1 is the concentration (mol/l) of the reactant A and x2

is the concentration of the desired product B. The rate

constants are given by

k1 � 5:35� 1010 exp
ÿ9000

T

� �
per min (3)

and

k2 � 4:61� 1017 exp
ÿ15 000

T

� �
per min (4)

The initial state is speci®ed as

x�0�T � 0:95 0:05� � (5)

and the batch time is speci®ed as tf � 30 min. The perfor-

mance index to be maximized is the concentration of

component B at the speci®ed ®nal time, i.e.,

I � x2�tf� (6)

The standard optimal control problem is then to ®nd the

temperature pro®le, such that the performance index in

Eq. (6) is maximized.

Here we initially consider this formulation of the optimal

control problem and then make the problem more realistic

by adding two differential equations to this model to take

into account how such a temperature pro®le can be

approached in practice.

To ®nd the optimal temperature pro®le, we ®rst divide the

given time interval into P subintervals of equal length (0, t1),

(t1, t2),. . ., (tP-1, tP), where tP � tf, so that the length of each

subinterval is

L � tf

P
(7)

We seek a piecewise linear continuous control policy for the

temperature pro®le, so that in the time interval (tk, tk � 1) the

temperature is given by

T�t� � T�k� � T�k � 1� ÿ T�k�
L

� �
�t ÿ tk� (8)

where T(k) is the temperature at time tk and T(k � 1) is the

temperature at time tk � 1. The optimal control problem is to

®nd the P � 1 values of T(k), k � 0, 1, 2,. . ., P, such that the

performance index given in Eq. (6) is maximized.

This problem is readily solved by using IDP with a single

grid point for the state at each time stage [14,15], by using

the algorithm given in Appendix B. We chose P � 50 time

stages, and an initial control policy of 335 K, with the initial

region size r(0) � 50 and region contraction factor 
 � 0.85.

Two passes were used, each consisting of 30 iterations, with

a region restoration factor � � 0.70. Double precision was

used throughout. It was found that even with three allowable

values of control (R � 3), rapid convergence to

x2(tf) � 0.768367 was obtained, as is shown in Fig. 1 for

the ®rst 15 iterations. The computation time on a Pentium/

120 personal computer for R � 5 allowable values for

control for the two passes was only 14.8 s. The resulting

optimal temperature pro®le is shown in Fig. 2, and the

concentration pro®les for components A and B are given

in Fig. 3.

Fig. 1. Effect of the number of allowable values for control on the

convergence rate of IDP for Example 1.
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To obtain the best isothermal control policy, we simply

consider a single stage and piecewise constant control

policy. In a straightforward manner by using IDP with

the single time stage, we obtained x2(tf) � 0.763606 at a

constant temperature of 329.02 K. Therefore, the use of the

optimal control policy rather than the best isothermal policy

gives an increase of 0.6% in the yield of the desired product.

These two values for the yield provide a benchmark when

considering the practical attainment of the maximum yield.

We are now interested in considering the practical opti-

mal control problem, where the batch is loaded initially at

310 K, and there is a heat exchanger jacket around the

reactor. As a control, instead of the temperature pro®le, we

use ¯ow rates of hot water for heating and cold water for

cooling the jacket surrounding the reactor. We assume that

the water in the jacket is recirculated around the reactor

suf®ciently fast, so that the rate of in¯ow does not affect the

heat transfer coef®cient, which is taken to be constant. The

water from the jacket is bled off at the same rate as the

in¯ow.

If we denote the temperature inside the reactor by x3 and

the jacket temperature by x4, we have two additional

differential equations

dx3

dt
� �ÿ�H1�k1x1

�Cp

� �ÿ�H2�k2x2

�Cp

ÿ UA�x3 ÿ x4�
V�Cp

(9)

and

dx4

dt
� u1�372ÿ x4�

Vj

� u2�300ÿ x4�
Vj

� UA�x3 ÿ x4�
Vj�jCpj

(10)

where u1 and u2 are the ¯ow rates of hot and cold water,

respectively. These ¯ow rates are bounded by

0 � uj � 2:85 m3=min; j � 1; 2: (11)

The temperature of the hot water entering the jacket is

arbitrarily set at 372 K and the cold water temperature is set

at 300 K. The term �Cp for the components inside the

reactor and for the water in the jacket is taken to be

4.19 � 103 kJ/(m3 K). Both of the reactions are exothermic

with (ÿ�H1) � 79.2 kJ/mol and (ÿ�H2) � 53.0 kJ/mol.

We also take the volume of the reactor to be V � 1.2 m3

and of the jacket Vj � 0.15 m3. With these parameters,

Eqs. (9) and (10) become

dx3

dt
� 18:90k1x1 � 12:65k2x2 ÿ 1:989� 10ÿ4UA�x3 ÿ x4�

(12)

and

dx4

dt
� 6:67u1�372ÿ x4� � 6:67u2�300ÿ x4� � 1:591

� 10ÿ3UA�x3 ÿ x4� (13)

The initial conditions for these variables are x3(0) � 310 and

x4(0) � 310. The system now consists of Eqs. (1), (2), (12)

and (13) with the initial state

x�0�T � 0:95 0:05 310 310� � (14)

It is noted that the reactor is started 198 below its best

isothermal temperature, so part of the problem is to raise the

temperature to some value which is not known ahead of

time. Therefore, the optimal control problem we wish to

consider is the determination of the controls u1 and u2 so that

the performance index in Eq. (6) is maximized.

Fig. 2. Optimal temperature profile, giving x2(tf) � 0.76837 mol/l.

Fig. 3. Concentration profiles with the use of optimal temperature profile.
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To avoid simultaneous heating and cooling, we introduce

a heat ¯ow term w with the bounds

ÿ2:85 � w � 2:85 (15)

such that

u1 � w; u2 � 0 if w � 0

u2 � ÿw; u1 � 0 if w < 0 (16)

and carry out optimization on w. Thus for optimization there

is really a single scalar variable to be determined. We are

seeking a piecewise constant control over P time stages, and

IDP is well suited for such optimization.

From the values of heat transfer coef®cients reported by

Geankoplis [16], a practical range for the heat transfer term

UA appears to be between 400 and 4000 kJ/(min K). Runs

were performed by increasing UA in multiples of 342 for

different number of time stages P. As expected, the optimum

yield increases as UA is increased, but the increase is

determined very much by the number of time stages P

when UA is large, as is shown in Fig. 4. When P � 10, the

change in ¯ow rates is done after every 3 min, whereas with

P � 30, the ¯ow rates are changed after each minute,

allowing more accurate switching of the coolant ¯ow rate,

which is translated more directly into the change in the

reactor temperature when UA is high. When P � 10, then no

improvement in the yield is obtained if UA is increased

beyond 1000, and when P � 15 no improvement is obtained

if UA is increased beyond 1600. It is noted that when UA is

greater than 1000 and P is greater than 10, then the yield

obtained is greater than is possible by the best isothermal

policy. With UA � 2052 kJ/(min K) the yield is approxi-

mately halfway between the yields obtained from the best

isothermal temperature pro®le and the optimal temperature

pro®le. The use of P � 20 rather than P � 15 gives only a

slight improvement from x2(tf) � 0.76560 to x2(tf) �
0.76605, whereas the use of P � 10 gives a considerably

lower value.

The optimal control policies for the coolant ¯ow rate

for P � 15 and P � 20 are given in Figs. 5 and 6. In each

case, for the ®rst stage, only heating was used and for the

rest of the stages only coolant was used. With P � 15, for

Fig. 4. Effect of the heat transfer term UA on x2(tf) as a function of the

number of stages P.

Fig. 5. Optimal flow rate of coolant as function of time for UA � 2052 kJ/

min K with P � 15.

Fig. 6. Optimal flow rate of coolant as a function of time for

UA � 2052 kJ/min K with P � 20.

4 R. Luus, O.N. Okongwu / Chemical Engineering Journal 75 (1999) 1±9



the ®rst stage u1 � 1.4858, whereas with P � 20, for the

®rst stage u1 � 2.8500. It is noted that with P � 20, the

coolant ¯ow rate policy is smoother than with P � 15. The

resulting temperature pro®les are shown in Fig. 7. It is

observed that a higher reactor temperature results with

P � 15, but the value of the performance index is slightly

lower than with P � 20.

To obtain these results, an initial value for w of 1.0 was

used, with an initial region size of 2.85. Three grid points

were used (N � 3) and 21 allowable values for control

(R � 21) were used at each iteration. The region reduction

factor 
 � 0.90 was used in every iteration. Region restora-

tion factor � � 0.75 was used for each pass. Each run

consisted of 40 passes, each consisting of 30 iterations.

For integration, the subroutine DVERK [17] was used with

local error tolerance of 10ÿ6. On PentiumII/300 each run

took approximately 25 min with P � 15 and 40 min with

P � 20.

Now let us consider the application to a realistic situation.

Suppose that the optimal control policy as determined for

UA � 2052 is applied with P � 20, but in reality

UA � 1800. Then with this control policy we should get

x2(tf) � 0.7611. Suppose that such an error in the heat

transfer term is detected after the second time stage when

x � �0:74846 0:24664 333:42 322:29�T. We can use

this as the initial condition and, while the reactor is operat-

ing at the previously determined control policy, we carry out

optimization over the remaining 18 stages, each of length

1.5 min. We specify the control for the ®rst stage to be

w � ÿ0.1314, i.e., u1 � 0 and u2 � 0.1314, because this is

used while carrying out the optimization calculations. Since

for this optimization problem we have already a good initial

control policy available, we used N � 1 and R � 11 and

carried out 9 passes of 30 iterations each, using as the initial

region size 0.285 on PentiumII/300 to yield x2(tf) �
0.76548. The computation time of 86 s is within the length

of the sampling time of 90 s, so the newly recalculated

control policy as given in Fig. 8 can be implemented at the

beginning of the fourth stage to give the higher yield. Thus

optimal control as calculated here can be used to give in

essence a feedback control policy where inaccuracies of the

model can be taken into account, since the optimization can

be carried out within a single sampling period. As the

reaction proceeds, further updates can be carried out. Each

successive update requires less computational effort since

the number of stages becomes smaller as the reaction

proceeds. Although it could be argued that here the

improvement in the concentration of the desired product

is quite small, in the next example we shall see that sig-

ni®cant improvement in the yield can be realized by using

optimal control, rather than trying to run the reactor at some

best isothermal condition.

2.2. Example 2

We next consider the bitumen pyrolysis problem ®rst

considered for optimal control studies by Wen and Yen [4],

and the problem has been used for optimal control studies by

Luus [5], Rosen and Luus [18,19], and Bojkov and Luus [3].

There are ®ve chemical reactions taking place among four

chemical species, giving the system of equations

dx1

dt
� ÿk1x1 ÿ �k3 � k4 � k5�x1x2 (17)

Fig. 7. Optimal temperature profile for the reactor with UA � 2052 kJ/

min K with different number of stages: (- - -) P � 15, (ÐÐÐ) P � 20.
Fig. 8. Coolant flow rate policy after the first two stages: (- - -) original

policy based on UA � 2052 kJ/min K, (ÐÐÐ) recalculated control

policy based on UA � 1800 kJ/min K.
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dx2

dt
� k1x1 ÿ k2x2 � k3x1x2 (18)

dx3

dt
� k2x2 � k4x1x2 (19)

dx4

dt
� k5x1x2 (20)

with the initial state x�0� � �1 0 0 0�T . The standard

optimal control problem studied by many researchers has

been to determine the temperature pro®le that will max-

imize the yield of the desired bitumen concentration; i.e., to

maximize

I � x2�tf� (21)

subject to the temperature constraints

698:15 � T � 748:15 (22)

The temperature enters the equations implicitly through the

reaction rate constants

ki � ki0 exp
ÿEi

RT

� �
; i � 1; 2 . . . ; 5 (23)

where the activation energy Ei and ki0 are given in the

literature [2,4]. The residence time or batch time tf is

speci®ed as 9.3 min. This optimal control problem to estab-

lish the optimal temperature pro®le is readily solved with

IDP [3]. The solution consists of keeping the temperature at

the lower boundary until about t � 3.59 min and then

switching to the upper boundary and keeping it there for

about 1.29 min and then bringing the temperature rapidly

but not abruptly to the lower boundary and keeping it there

for about 4.04 min [3].This optimal control policy gives

x2(tf) � 0.35382 mol/l which is 1.8% better than the yield

x2(tf) � 0.34763 mol/l obtained by the best isothermal pol-

icy of T � 712.5.

By using a reactor of volume 1.2 m3 and realistic para-

meters, the heat balance on the reactor gives us the differ-

ential equation for the reactor temperature

dx5

dt
� 602:4k1x1 ÿ 0:833�UA=���x5 ÿ x6�� �

Cp

(24)

where the slurry density is given by

� � 2139x1 � 760x2 � 560x3 � 1800x4 (25)

and the heat capacity is given by

Cp � 1:16x1 � 0:827�1ÿ x1� � �3:4x1 � 0:92�1ÿ x1��
� �x5 ÿ 298� � 10ÿ3 (26)

The differential equation describing the temperature of

the jacket surrounding the reactor is

dx6

dt
� u1�873ÿ x6� � u2�373ÿ x6� � 0:01357UA�x5 ÿ x6�

(27)

where u1 is the hot steam ¯ow rate and u2 is the `cold' steam

¯ow rate (m3/min), bounded by

0 � uj�t� � 5:0; j � 1; 2: (28)

As in the ®rst example, to avoid simultaneous ¯ows of

heating steam and coolant, we introduce again the heat ¯ow

term w with bounds fromÿ5 to 5, and carry out optimization

using w as the control variable. Then the result is translated

to the values of u1 and u2 as before.

To handle the upper and lower constraints on the reactor

temperature, we use the penalty function method as used for

state constraints by Luus [20] and by Mekarapiruk and Luus

[21], where we introduce two additional differential equa-

tions

dx7

dt
� 698:15ÿ x5 if x5 < 698:15

0 if x5 � 698:15

�
(29)

dx8

dt
� x5 ÿ 748:15 if x5 > 748:15

0 if x5 � 748:15

�
(30)

with zero initial condition. Whenever the constraints are

violated, these auxiliary variables become positive. To

prevent constraint violation, therefore, we construct the

augmented performance index

J � x2�tf� ÿ ��x7�tf� � x8�tf�� (31)

where � is a penalty function factor. The problem is now to

choose w to maximize J. The initial condition for the state

vector is

x�0� � �1 0 0 0 698:15 698:15 0 0�T (32)

As in the ®rst example, we used DVERK with local error

tolerance of 10ÿ6 to integrate the differential equations. For

this example we used P � 20 time stages, each of length

0.465 min and piecewise constant control. Here we found

that in order to get convergence from an initial choice of

w � 1.0, we had to use a relatively large number of grid

points. By taking � � 0.01, N � 21, R � 15, 
 � 0.90,

� � 0.85, UA � 1000, w(0) � 1.0, r(0) � 5.0, in 10 passes

of 20 iterations each, the resulting value of the performance

index was J � I � 0.35193. By using the resulting control

policy as the initial starting point and initial region size of

0.1, another run was performed to yield a re®ned value of

I � 0.35211. The computation time for the initial run was

approximately 4 h on Pentium/120. The large computation

time is mostly due to the need for a large number of grid

points to obtain convergence from a poor initial starting

point. Once a good starting policy is obtained, there is no

longer the need for such a large number of grid points. This

is illustrated later, where we show that a single grid point can

be used to enable optimization to be carried out `on-line'.

The resulting control policy as given in Fig. 9, shows that

initially there is an attempt to bring the reactor temperature

up to a high value, but full heating is not applied immedi-

ately. Then, halfway through the reaction, cooling is applied

to reduce the temperature to the lower bound and to keep the

reactor temperature then at the lower bound until the ®nal

6 R. Luus, O.N. Okongwu / Chemical Engineering Journal 75 (1999) 1±9



(33)

time is reached. The temperature pro®le is given in Fig. 10.

Although the ideal temperature pro®le cannot be achieved,

the yield of 0.35211 is within 0.5% of the theoretical

optimum of 0.35382 and is 1.3% above the best isothermal

yield of 0.34763 mol/l.

As is shown in Fig. 11, the effect of UA is noticeable but

not overwhelming. Even with UA � 400, we get substan-

tially better yield than can be expected from best isothermal

operation.

Now consider the situation where the optimal control

policy for UA � 1200 is used, when after two sampling

periods it is found that in reality UA � 800. If no correction

is made, then the ®nal yield will be 0.35127. If the control

policy is switched over to the one obtained for UA � 800

then a ®nal yield of 0.35133 is obtained. Although these

yields may be considered acceptable, we can improve the

result by recalculating the control policy. The cooling phase

starts at around t � 4.65 min, so the computations will have

to be done in less than 3.7 min, since the ®rst two sampling

times have used up 0.93 min of the batch time. The optimal

control policy that has been established for UA � 1200 as

applied to UA � 800 will give in time 4.65 the following state

x�4:65���0:71504 0:14675 0:08248 0:05573 730:72 775:22 0 0�T

Now we can perform the optimization over the remaining 10

stages, by using Eq. (33) as the initial condition with initial

time of 4.65 min. We can use the previously calculated

optimal control policy as the initial control policy. There-

fore, a single grid point and a small number of passes could

be used for the optimization to save computation time. The

computation time for one such run consisting of two passes,

each consisting of 20 iterations, was 14.3 s on PentiumII/

300 computer. After six runs, taking 1.5 min of computation

time in total, a reoptimized control policy was calculated for

UA � 800 with a resultant yield of 0.35192 mol/l. This is

quite close to 0.35201 if the optimal control policy for

UA � 800 would have been used for the entire time interval.

The differences in the control policies for the latter half of

the batch time are apparent in Fig. 12. As the computers

become faster, optimization by IDP will be possible `on-

line' for even more complex problems.

Fig. 9. Optimal control policy for UA � 1000 for Example 2, giving

x2(tf) � 0.35211 mol/l.

Fig. 10. Temperature profile resulting from the optimal control policy for

UA � 1000 kJ/min K.

Fig. 11. Effect of the heat transfer term UA on the yield x2(tf) using

P � 20.
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3. Conclusions

Although the inclusion of additional differential equa-

tions to handle the ¯ow rates as control increases the

computational effort quite signi®cantly, the computation

time with IDP is not excessive. The effect of the heat

transfer coef®cient is quite important, and therefore, accu-

rate modelling is required when implementation of optimal

control is considered in practice. However, even with inac-

curate modelling, the parameters can be updated while

running the reactor. With the updated parameters reoptimi-

zation can be carried out over the rest of the batch time even

with complex systems.

Since personal computers are now very fast and will be

even faster in the future, the optimal control approach as

outlined here appears to be quite practical. Although the

resulting control policy is open loop in nature, during the

course of reaction the parameters can be updated and the

optimization problem can be solved repeatedly. This means

that appropriate changes can be made during the operation

of the reactor. In essence then the optimal control will be

feedback in nature, where the control action is determined

from the knowledge of the state of the system at any

particular time.

Acknowledgements

Financial support from the Natural Sciences and Engi-

neering Research Council of Canada is gratefully appre-

ciated.

Appendix

Nomenclature

A reactant

A area (m2)

B desired product

C waste product

Cp heat capacity (kJ/(kg K))

Ei activation energy of reaction i

�H molar enthalpy change used in Eq. (9) (kJ/mol)

I performance index to be maximized

J augmented performance index

ki rate constant (per min)

L length of time step (min)

N number of grid points used in IDP

P number of time stages

q pass number

r region size used for allowable control

R number of allowable values for control used at each

grid point, gas constant

t time (min)

tf residence time or batch time (min)

T temperature (K)

u1 flow rate of heating fluid (m3/min)

u2 flow rate of coolant (m3/min)

U heat transfer coefficient (kJ/(m2 min K))

V volume of the reactor (m3)

Vj volume of the jacket (m3)

w heat flow term used for optimization to eliminate

simultaneous cooling and heating (m3/min)

xi state variable

x state vector

Greek letters


 region contraction factor used after every iteration

� region restoration factor

� penalty function factor

� density (kg/m3)

Subscripts/superscripts

f final

j jacket

T transpose

(0) initial value

Appendix B

Iterative dynamic programming algorithm

1. Divide the given time interval into P time stages, each

of equal length L.

Fig. 12. Control policies for UA � 800 kJ/min K: (- - -) optimal policy for

UA � 1200, giving x2(tf) � 0.35127 mol/l, (ÐÐÐ) control policy as

recalculated from the state at t � 4.65 min, giving x2(tf) � 0.35192 mol/l.
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2. Choose the number of test values for the temperature T

(control) denoted by R, an initial control policy and the

initial region size rin; also choose the region contraction

factor 
 used after every iteration and the region restora-

tion factor � used after every pass.

3. Choose the number of iterations to be used in every pass

and the number of passes.

4. Set the pass number index q � 1, and the iteration

number index j � 1.

5. Set r(j) � �qÿ1rin.

6. With the best control policy (the initial control policy for

the first iteration of the first pass), integrate Eqs. (1) and

(2) to generate the x-trajectory and store the values of x at

the beginning of each time stage, so that x(k-1) corre-

sponds to the value of x at the beginning of stage k.

7. Starting at stage P, corresponding to time tf ÿ L, inte-

grate Eqs. (1) and (2) from tf ÿ L to tf, using as the initial

state the stored value x(P ÿ 1) from step 6, with each of

the R allowable sets of control, by using the piecewise

linear control in Eq. (8) where for the last stage

T�Pÿ 1� � T�Pÿ 1���j� � D1r�j�

and

T�P� � T�P���j� � D2r�j�

Here T(P ÿ 1)*(j) and T(P)*(j) are the best values obtained

in the previous iteration and D1 and D2 are different

random numbers between ÿ1 and 1. Out of the R values

of the performance index I as calculated from Eq. (6),

choose the temperature values that give the maximum

value, and store these as T(P-1) and T(P).

8. Step back to stage P ÿ 1, corresponding to time tf ÿ 2L.

Choose R values for T(P ÿ 2) as in step 7, and by taking

as the initial state x(P ÿ 2) integrate Eqs. (1) and (2) over

one stage length by using Eq. (8) for the control. Con-

tinue integration over the last time stage by using Eq. (8)

with the stored values of T(P ÿ 1) and T(P) from step 7.

Compare the R values for the performance index I and

store the T(P ÿ 2) that gives the maximum value.

9. Continue the procedure until stage 1, corresponding to

the initial time t � 0 and the given initial state, is

reached. As before, integrate Eqs. (1) and (2) and com-

pare the R values of I and store the value T(0) corre-

sponding to the maximum value of I.

10. Reduce the region for allowable control

r�j�1� � 
r�j�

where j is the iteration number index.

11. Increment the iteration index by 1, use the superscript*

to denote the best control values from step 9, and go to

step 6. Continue the procedure for the chosen number of

iterations specified in step 3 to finish the pass.

12. Increment the pass number index q by 1 and go to step

5. Continue the procedure for the specified number of

passes and interpret the results.
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